"Begin at the beginning," the King said gravely, "and go on till you come to the end: then stop."

--Lewis Carroll

Alice's Adventures in Wonderland
Me

- Work for the Engineering School at NU.
- Support for several computational research groups (in addition to IT infrastructure)
 - Molecular dynamics
 - Complex systems
 - Finite element Analysis
- Local Red Hat Network proxy
- On-campus software mirror
- Unix stuff...
Stuff in the queue

- Background / History
- Cluster planning and installation
- Using / Queuing
Types of clustering

- High Availability
 - Failover/redundancy
 - Linux-HA project

- Load Leveling
 - Focus on job throughput
 - Good for workstations (Condor project)

- Beowulf clusters
 - Complicated / big jobs
 - What we're talking about today
Short history

- Supercomputing in the old days (pre-1994)
 - IBM Mainframes
 - Crays
 - EXPENSIVE
 - Gov't and Gov't related use
 - Weather
 - Nuclear weapons testing
 - Scientific simulations (physics!)
 - Cryptography
 - etc
1993...

- Thomas Sterling and Donald Becker working at Goddard Space Flight Center (MD).

- Idea for COTS system
 - Cheap networking (Ethernet)
 - Cheap Unix OS (Linux—DB wrote network drivers!)

...1994

- 16 node cluster online “Wiglaf”
 - Speed demon: 66Mhz 486DX4 processors
 - $40,000
History: recent past

- Whole industry developed.
- Rack mount hardware over workstations
 - Workstations still around though...
- Cluster-in-a-box / turn-key systems
- Small clusters are “easy”
- Big clusters are hard (and expensive)
Current Clusters

Small...Aluminum(?)
- Hydra
 - 32 node, dual 2.6GHz Xeon, 2GB RAM/node
- Caramulo
 - 28 node, dual 2.6GHz Opteron, 4GB RAM/node
- Nutzy
 - 4 node, 500Mhz PII

Big Iron
- ASC Purple
 - Sandia NL, 12,544 POWER5 chips, AIX, 7.5 MW of power, 16M BTUs
- Blue Gene/L
 - IBM, 65k PPC CPUs, AIX/Linux
- Thunderbird
 - Sandia, 4512 Dell 1850s
Current Clusters

- Super Computers: ASC Purple
- Non-Super Computers: Nutzy, Hydra and Cusask
Preperation
Things to know pre-install

1. Understand your problem!
2. Know your code
 - Memory
 - Network
 - CPU
 - IO
3. 80% of time is spent in 20% of the code
Choices: Hardware

- Same hardware is nice
 - “Similar” is okay.
 - Mixed clusters are possible, but harder
 - Need a good job scheduler

- Replacements
 - Same hardware makes replacement easy

- Buy good hardware
CPU: AMD vs. Intel

AMD
- Better memory bandwidth (hypertransport)
- Cheaper (?)

Intel
- Faster raw number crunching
- Limited memory bandwidth (CPUs shared bus)
Memory

- More memory == good
- Swap == very bad
 - As soon as you start swapping, performance tanks
Disk

- Slowest part of the system \((10^{-9} \text{ sec vs } 10^{-3} \text{ sec})\)
- Slow IO can cripple a cluster
- RAID
 - Absolutely required
 - RAID 10 if possible
 - RAID \(!=\) backup
Network

- 2nd slowest part of the system
- GigE
 - Cheap / Easy
 - Latency is awful
 - NIC / Switch makes a huge different
 - Tune settings – Intel cards are good for this
- Infiniband / Myrinet
 - Better latency / bandwidth
 - Double cost of a node
 - Still need a management network...
Remote access

- KVM
 - Very handy
- KVM over IP
 - Expensive, but handy
- Serial console
Environmental

- **Cooling**
 - 1-2 tons of AC/rack
 - 6 tons for blades
 - 1 ton = 12,000 BTU
- **Power**
 - 400W per node...32 nodes = 14KW...
- **Security**
- “Environmental” cost is half the total cost
Design...

- Network architecture
- IO systems / Storage
 - Backups
- User management
 - Resource limits
 - Quotas (disk/CPU)
 - Accounting
- Queuing
Installation!
Frontend

- Frontend / Head node / Management node
- Controls rest of the cluster
 - User management
 - Queue management
- Frequently has primary data storage
- Application exports
Frontend install issues

- Like a standard server install
- Base system
 - Userspace tools
 - Development stuff (gcc, gdb, icc)
 - Editors, analysis tools, etc
 - Shared applications (Matlab, MD, etc)
 - Security (firewalls, private network, etc)
 - Package updates?
- Storage (quotas)
- User accounts (resource access)
Compute Nodes

- Actually do the work
- Installs should be automated
 - Or at least cloneable...
- Scalable install/configuration method is key.
- Config management after install?
 - Cfengine, *et al*
 - Do we care? Reinstall!
Compute Node Install Methods

Image Installs
- "Golden Master"
- Easy to create
 - `cat /dev/hda > disk.img`
- Hard to change
- What about different hardware?

Metadata Installs
- Care about configuration, not specific files
- Hard to create
- Easy to manage
- Handles different hardware
Compute node install issues

- First few times are iterative
 1. Configure
 2. Install
 3. Test

- Things to consider
 - Partitioning
 - Software packages / configuration
 - System time
 - Kernel settings
 - User distribution?
ROCKs
ROCKS Cluster distribution

- From San Diego Supercomputing Center at University of California at San Diego
- Full time staff (at least three)
- Built of CentOS
- **Heavy** use of kickstart installs (and RPM)
- Flexible
- Active mailing list and wiki
- Full MPI support, Intel compilers, other goodies
ROCKS install

- Architechures: x86, x86_64, ia64
- Supports ethernet, Myrinet, Infiniiband
- Modest hardware requirements:
 - Head node:
 - 20GB disk
 - ~800MB RAM
 - 2 ethernet ports
 - Compute node
 - ~6GB disk
 - 512MB RAM
 - ethernet port
Customization

- Modular install using “Rolls”
- A few base rolls (kernel, OS, webserver, etc)
- Collection of semi-related packages
- Job-specific rolls
 - Java
 - Condor
 - Bioinformatics
 - Visualization
Cluster Administration

- Centralized user administration via 411
 - 411 is a secure file distribution system
 - Simpler than NIS, more resilient, scales better
- MySQL to store some information
- XML files to store compute node configs.
- Easy to change
 - Add packages
 - Set config files
 - Kernel tuning
Example customizations

XML file (abbreviated)

```xml
<kickstart>
  <description>
    extend-compute.xml: Local customizations to compute.xml
  </description>
  <package> subversion </package>
  <package> fftw </package>
  <package disable="1"> sendmail </package>
  <post>
    <file name="/etc/ntp.conf">
      restrict 10.1.1.1 mask 255.0.0.0
      broadcastclient
      authenticate no
    </file>
    chkconfig ntpd on
  </post>
</kickstart>
```
Node installation

- Compute nodes boot off CDROM or PXE
- Fetch ks.cfg from head node via HTTP
- Starts *anaconda* (the Redhat installer)
 - Partitioning
 - Installs RPM packages
 - `%post` section
- Reboots
- (about 12 minutes)
Queueing

“Garbage in, garbage out.”

--Traditional
(maybe Charles Babbage)
Why do we need a queue?

- In a perfect world, don't need it
 - Infinite resources
 - People are nice
- In the real world...
 - Resources are limited
 - Lots of people want them
 - People aren't nice
Queuing is a hard problem

- Can't make everyone happy all the time.
- Try to be equal and fair
 - Some things are more equal than others
 - Different purchase contributions
 - Some projects more important than others
- Cheaters...
Parts of a queue (1/2)

- Scheduler
 - Sorts the jobs
 - Manages resource access / permissions
 - Accounting
 - What the users complain about.
 - “why isn't my job running?”
Parts of a queue (2/2)

- Dispatcher
 - Sends jobs to compute nodes
 - Daemon on nodes
 - Runs jobs
 - Provides runtime environment
- LD_LIBRARY_PATH
- License file locations
- What about stdin, stdout, and stderr?
Queuing software

- Direct logins
 - Bad idea
- atd/batch
 - Probably installed, very basic
- GNU Queue
 - Basic queuing, not as flexible as alternatives
- OpenPBS
 - Common in .edu
- Sun Gridengine
 - Best option?
Sun Grid Engine

- Open Source (but you can pay if you want)
- Handles scheduling, dispatching, accounting
- Under active development
- Runs on most Unix systems, and most architectures
- Scales to many thousands of jobs.
Using SGE

- All jobs are shell scripts
- SGE exports certain information (Job ID, hostname, etc) to the job
- Use `qsub` to submit jobs
- Use `qstat` to check on job status
Questions?
(and links)

- http://www.beowulf.org/
- http://www.rocksclusters.org/
- http://gridengine.sunsource.net/
- http://www.cs.wisc.edu/condor/
- http://oscar.openclustergroup.org/